Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.367
Filtrar
1.
J Biol Chem ; 300(1): 105566, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103643

RESUMO

Macrophages play critical roles in inflammation and tissue homeostasis, and their functions are regulated by various autocrine, paracrine, and endocrine factors. We have previously shown that CTRP6, a secreted protein of the C1q family, targets both adipocytes and macrophages to promote obesity-linked inflammation. However, the gene programs and signaling pathways directly regulated by CTRP6 in macrophages remain unknown. Here, we combine transcriptomic and phosphoproteomic analyses to show that CTRP6 activates inflammatory gene programs and signaling pathways in mouse bone marrow-derived macrophages (BMDMs). Treatment of BMDMs with CTRP6 upregulated proinflammatory, and suppressed the antiinflammatory, gene expression. We also showed that CTRP6 activates p44/42-MAPK, p38-MAPK, and NF-κB signaling pathways to promote inflammatory cytokine secretion from BMDMs, and that pharmacologic inhibition of these signaling pathways markedly attenuated the effects of CTRP6. Pretreatment of BMDMs with CTRP6 also sensitized and potentiated the BMDMs response to lipopolysaccharide (LPS)-induced inflammatory signaling and cytokine secretion. Consistent with the metabolic phenotype of proinflammatory macrophages, CTRP6 treatment induced a shift toward aerobic glycolysis and lactate production, reduced oxidative metabolism, and elevated mitochondrial reactive oxygen species production in BMDMs. Importantly, in accordance with our in vitro findings, BMDMs from CTRP6-deficient mice were less inflammatory at baseline and showed a marked suppression of LPS-induced inflammatory gene expression and cytokine secretion. Finally, loss of CTRP6 in mice also dampened LPS-induced inflammation and hypothermia. Collectively, our findings suggest that CTRP6 regulates and primes the macrophage response to inflammatory stimuli and thus may have a role in modulating tissue inflammatory tone in different physiological and disease contexts.


Assuntos
Adipocinas , Perfilação da Expressão Gênica , Inflamação , Lipopolissacarídeos , Macrófagos , Fosfoproteínas , Proteômica , Animais , Camundongos , Adipocinas/deficiência , Adipocinas/genética , Adipocinas/metabolismo , Células da Medula Óssea/citologia , Citocinas/metabolismo , Glicólise , Hipotermia/complicações , Inflamação/complicações , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Ácido Láctico/biossíntese , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo
2.
Eur J Neurosci ; 58(10): 4107-4122, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37846812

RESUMO

Activation and polarization of microglia play decisive roles in the progression of intracerebral haemorrhage (ICH), and lactate exposure correlates with microglia polarization. This study explores molecules influencing lactate production and microglia phenotype alteration following ICH. A murine model of ICH was induced by intracerebral injection of collagenase. The mice experienced autonomous neurological function recovery, haematoma resolution and rapid lactate production, along with a gradual increase in angiogenesis activity, neuronal recovery and an M1-to-M2 phenotype change of microglia. Galloflavin, a lactate dehydrogenase antagonist, suppressed this phenotype change and the functional recovery in mice. FOS like 2 (FOSL2) was significantly upregulated in the brain tissues from day 7 post-ICH. Overexpression of FOSL2 induced an M1-to-M2 phenotype shift in microglia and accelerated lactate production in vivo and in haemoglobin-treated microglia in vitro. Long non-coding RNA MIR17HG impeded FOSL2-mediated transcription activation of hypermethylated in cancer 1 (HIC1). MIR17HG overexpression induced pro-inflammatory activation of microglia in mice, which was blocked by further HIC1 overexpression. Overall, this study demonstrates that MIR17HG maintains a pro-inflammatory phenotype of microglia during ICH progression by negating FOSL2-mediated transcription activation of HIC1. Specific inhibition of MIR17HG or upregulation of FOSL2 or HIC1 may favour inflammation inhibition and haematoma resolution in ICH.


Assuntos
Hemorragia Cerebral , Antígeno 2 Relacionado a Fos , Fatores de Transcrição Kruppel-Like , Microglia , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Microglia/metabolismo , Hemorragia Cerebral/metabolismo , Ácido Láctico/biossíntese , Ativação Transcricional , Hematoma , Masculino , Camundongos Endogâmicos C57BL , Células Cultivadas
3.
Nucleic Acids Res ; 50(10): 5988-6000, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641106

RESUMO

Saccharomyces cerevisiae is an important model eukaryotic microorganism and widely applied in fundamental research and the production of various chemicals. Its ability to efficiently and precisely control the expression of multiple genes is valuable for metabolic engineering. The clustered regularly interspaced short palindromic repeats (CRISPR)-mediated regulation enables complex gene expression programming; however, the regulation efficiency is often limited by the efficiency of pertinent regulators. Here, we developed CRISPR-mediated protein-tagging signal amplification system for simultaneous multiplexed gene activation and repression in S. cerevisiae. By introducing protein scaffolds (SPY and SunTag systems) to recruit multiple copies of regulators to different nuclease-deficient CRISPR proteins and design optimization, our system amplified gene regulation efficiency significantly. The gene activation and repression efficiencies reached as high as 34.9-fold and 95%, respectively, being 3.8- and 8.6-fold higher than those observed on the direct fusion of regulators with nuclease-deficient CRISPR proteins, respectively. We then applied the orthogonal bifunctional CRISPR-mediated transcriptional regulation system to regulate the expression of genes associated with 3-hydroxypropanoic acid production to deduce that CRISPR-associated regulator recruiting systems represent a robust method for simultaneously regulating multiple genes and rewiring metabolic pathways.


Assuntos
Sistemas CRISPR-Cas , Engenharia Metabólica , Saccharomyces cerevisiae , Ativação Transcricional , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/metabolismo , Edição de Genes/métodos , Ácido Láctico/análogos & derivados , Ácido Láctico/biossíntese , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética
4.
Sci Rep ; 12(1): 2123, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136142

RESUMO

Lactic acid is an important platform chemical used for the production of various compounds including polylactic acid (PLA). Optically pure L- and D-lactic acids are required to obtain high quality PLA. To advance the development and selection of microbial strains for improved production of lactic acid enantiomers, a high-throughput screening, dynamic pathway control, or real-time monitoring are often applied. Inducible gene expression systems and their application in the genetically encoded biosensors contribute to the development of these techniques and are important devices for the advancement of lactic acid biotechnology. Here, we identify and characterize eleven lactate-inducible systems from Escherichia coli, Cupriavidus necator, and Pseudomonas spp. The specificity and dynamics of these systems in response to L- and D-lactate, or structurally similar compounds are investigated. We demonstrate that the inducible systems EcLldR/PlldP and CnGntR/PH16_RS19190 respond only to the L-lactate, exhibiting approximately 19- and 24-fold induction, respectively. Despite neither of the examined bacteria possess the D-lactate-specific inducible system, the PaPdhR/PlldP and PfPdhR/PlldP are induced approximately 37- and 366-fold, respectively, by D-lactate and can be used for developing biosensor with improved specificity. The findings of this study provide an insight into understanding of L- and D-lactate-inducible systems that can be employed as sensing and tuneable devices in synthetic biology.


Assuntos
Cupriavidus necator/metabolismo , Escherichia coli/metabolismo , Ácido Láctico/biossíntese , Família Multigênica , Pseudomonas/metabolismo , Técnicas Biossensoriais , Cupriavidus necator/genética , Escherichia coli/genética , Pseudomonas/genética , Biologia Sintética
5.
Am J Physiol Endocrinol Metab ; 322(2): E181-E196, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34957858

RESUMO

Fetal hypoxemia decreases insulin and increases cortisol and norepinephrine concentrations and may restrict growth by decreasing glucose utilization and altering substrate oxidation. Specifically, we hypothesized that hypoxemia would decrease fetal glucose oxidation and increase lactate and pyruvate production. We tested this by measuring whole body glucose oxidation and lactate production, and molecular pathways in liver, muscle, adipose, and pancreas tissues of fetuses exposed to maternal hypoxemia for 9 days (HOX) compared with control fetal sheep (CON) in late gestation. Fetuses with more severe hypoxemia had lower whole body glucose oxidation rates, and HOX fetuses had increased lactate production from glucose. In muscle and adipose tissue, expression of the glucose transporter GLUT4 was decreased. In muscle, pyruvate kinase (PKM) and lactate dehydrogenase B (LDHB) expression was decreased. In adipose tissue, LDHA and lactate transporter (MCT1) expression was increased. In liver, there was decreased gene expression of PKLR and MPC2 and phosphorylation of PDH, and increased LDHA gene and LDH protein abundance. LDH activity, however, was decreased only in HOX skeletal muscle. There were no differences in basal insulin signaling across tissues, nor differences in pancreatic tissue insulin content, ß-cell area, or genes regulating ß-cell function. Collectively, these results demonstrate coordinated metabolic responses across tissues in the hypoxemic fetus that limit glucose oxidation and increase lactate and pyruvate production. These responses may be mediated by hypoxemia-induced endocrine responses including increased norepinephrine and cortisol, which inhibit pancreatic insulin secretion resulting in lower insulin concentrations and decreased stimulation of glucose utilization.NEW & NOTEWORTHY Hypoxemia lowered fetal glucose oxidation rates, based on severity of hypoxemia, and increased lactate production. This was supported by tissue-specific metabolic responses that may result from increased norepinephrine and cortisol concentrations, which decrease pancreatic insulin secretion and insulin concentrations and decrease glucose utilization. This highlights the vulnerability of metabolic pathways in the fetus and demonstrates that constrained glucose oxidation may represent an early event in response to sustained hypoxemia and fetal growth restriction.


Assuntos
Tecido Adiposo/metabolismo , Hipóxia Fetal/metabolismo , Feto/metabolismo , Glucose/metabolismo , Ácido Láctico/biossíntese , Fígado/metabolismo , Músculo Esquelético/metabolismo , Pâncreas/metabolismo , Tecido Adiposo/embriologia , Animais , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/metabolismo , Insulina/metabolismo , Secreção de Insulina , Fígado/embriologia , Masculino , Músculo Esquelético/embriologia , Oxirredução , Pâncreas/embriologia , Gravidez , Ovinos
6.
Chembiochem ; 23(3): e202100559, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34788501

RESUMO

The members of the infant microbiome are governed by feeding method (breastmilk vs. formula). Regardless of the source of nutrition, a competitive growth advantage can be provided to commensals through prebiotics - either human milk oligosaccharides (HMOs) or plant oligosaccharides that are supplemented into formula. To characterize how prebiotics modulate commensal - pathogen interactions, we have designed and studied a minimal microbiome where a pathogen, Streptococcus agalactiae engages with a commensal, Streptococcus salivarius. We discovered that while S. agalactiae suppresses the growth of S. salivarius via increased lactic acid production, galacto-oligosaccharides (GOS) supplementation reverses the effect. This result has major implications in characterizing how single species survive in the gut, what niche they occupy, and how they engage with other community members.


Assuntos
Oligossacarídeos/metabolismo , Prebióticos , Streptococcus agalactiae/metabolismo , Streptococcus salivarius/metabolismo , Suplementos Nutricionais , Microbioma Gastrointestinal , Humanos , Ácido Láctico/biossíntese , Ácido Láctico/química , Leite Humano/química , Oligossacarídeos/administração & dosagem , Prebióticos/administração & dosagem
7.
Anticancer Drugs ; 33(2): 132-141, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845165

RESUMO

Tubulin alpha 1c (TUBA1C) as a member of α-tubulin was identified to take part in the occurrence and development of hepatocellular carcinoma and pancreatic cancer. Using the bioinformatics, we noticed that TUBA1C level was also increased in breast cancer was also demonstrated. Here, we explored TUBA1 role in modulation of breast cancer cell aerobic glycolysis, growth and migration and explored whether yes association protein (YAP) was involved. Fifty-five matched breast cancer tissues and the para-carcinoma normal tissues were included in this study and used to verify TUBA1C expression using quantitative reverse transcription-PCR and western blotting. ATP level, lactate secretion and glucose consumption were used to assess aerobic glycolysis. Cell growth, invasion, migration and tumorigenesis were detected using cell count kit-8, transwell, wound healing and animal assays. TUBA1 was upregulated in breast cancer, which associated with advanced primary tumor, lymph node, metastasis stage and tumor size. Silencing of TUBA1C with sh-TUBA1C infection led to significant inhibitions in ATP level, lactate secretion, glucose consumption, cell growth, migration, invasion and tumorigenesis, as well as declined YAP expression, while TUBA1C overexpression induced a opposite result. And, the above tendencies induced by TUBA1C downregulation were reversed by YAP overexpression. This study revealed that TUBA1C was overexpressed in breast cancer and promoted aerobic glycolysis and cell growth through upregulation of YAP expression.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Glicólise/efeitos dos fármacos , Tubulina (Proteína)/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas de Sinalização YAP/biossíntese , Trifosfato de Adenosina/biossíntese , Adulto , Idoso , Animais , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Ácido Láctico/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
8.
Anticancer Drugs ; 33(1): e644-e654, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459457

RESUMO

Increasing evidence indicated that dysregulated circular RNAs were implicated in the progression of multiple malignancies. However, the function of circ_0000592 in gastric cancer (GC) progression and its associated mechanism remain poorly understood. Quantitative real-time PCR and Western blot assay were performed to detect RNA and protein expression. Cell proliferation, migration and invasion were analyzed by 5-Ethynyl-2'-deoxyuridine staining assay, Transwell migration assay and Transwell invasion assay, respectively. The glucose/lactate assay kit was used to assess the rates of glucose consumption and lactate production. The interaction between microRNA-1179 (miR-1179) and circ_0000592 or Annexin A4 (ANXA4) was confirmed by dual-luciferase reporter assay and RNA pull-down assay. Xenograft tumor model was established to investigate the effect of circ_0000592 on tumor growth in vivo. Circ_0000592 expression was elevated in GC tissues and cells. Circ_0000592 knockdown hampered cell proliferation, migration, invasion and glycolysis of GC cells. MiR-1179 was a direct target of circ_0000592, and circ_0000592 silencing-mediated effects in GC cells were partly reversed by the knockdown of miR-1179. MiR-1179 interacted with the 3' untranslated region (3'UTR) of ANXA4. Circ_0000592 silencing reduced ANXA4 expression partly by upregulating miR-1179 in GC cells. ANXA4 overexpression partly overturned circ_0000592 knockdown-induced effects in GC cells. Circ_0000592 depletion markedly suppressed xenograft tumor growth in vivo. Circ_0000592 contributed to GC progression through regulating miR-1179/ANXA4 axis, which provided novel potential biomarkers and therapeutic targets for GC treatment.


Assuntos
Anexina A4/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , RNA Circular/farmacologia , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Ácido Láctico/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Immunology ; 165(1): 61-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411293

RESUMO

Interleukin (IL)-33, a member in the IL-1 family, plays a central role in innate and adaptive immunity; however, how IL-33 mediates cytotoxic T-cell regulation and the downstream signals remain elusive. In this study, we found increased mouse IL-33 expression in CD8+ T cells following cell activation via anti-CD3/CD28 stimulation in vitro or lymphocytic choriomeningitis virus (LCMV) infection in vivo. Our cell adoptive transfer experiment demonstrated that extracellular, but not nuclear, IL-33 contributed to the activation and proliferation of CD8+ , but not CD4+ T effector cells in LCMV infection. Importantly, IL-33 induced mTORC1 activation in CD8+ T cells as evidenced by increased phosphorylated S6 ribosomal protein (p-S6) levels both in vitro and in vivo. Meanwhile, this IL-33-induced CD8+ T-cell activation was suppressed by mTORC1 inhibitors. Furthermore, IL-33 elevated glucose uptake and lactate production in CD8+ T cells in both dose- and time-dependent manners. The results of glycolytic rate assay demonstrated the increased glycolytic capacity of IL-33-treated CD8+ T cells compared with that of control cells. Our mechanistic study further revealed the capacity of IL-33 in promoting the expression of glucose transporter 1 (Glut1) and glycolytic enzymes via mTORC1, leading to accelerated aerobic glucose metabolism Warburg effect and increased effector T-cell activation. Together, our data provide new insights into IL-33-mediated regulation of CD8+ T cells, which might be beneficial for therapeutic strategies of inflammatory and infectious diseases in the future.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Glucose/metabolismo , Interleucina-33/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo Energético , Glicólise , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interleucina-33/genética , Ácido Láctico/biossíntese , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Transdução de Sinais
10.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885764

RESUMO

Lactate and isoprene are two common monomers for the industrial production of polyesters and synthetic rubbers. The present study tested the co-production of D-lactate and isoprene by engineered Escherichia coli in microaerobic conditions. The deletion of alcohol dehydrogenase (adhE) and acetate kinase (ackA) genes, along with the supplementation with betaine, improved the co-production of lactate and isoprene from the substrates of glucose and mevalonate. In fed-batch studies, microaerobic fermentation significantly improved the isoprene concentration in fermentation outlet gas (average 0.021 g/L), compared with fermentation under aerobic conditions (average 0.0009 g/L). The final production of D-lactate and isoprene can reach 44.0 g/L and 3.2 g/L, respectively, through fed-batch microaerobic fermentation. Our study demonstrated a dual-phase production strategy in the co-production of isoprene (gas phase) and lactate (liquid phase). The increased concentration of gas-phase isoprene could benefit the downstream process and decrease the production cost to collect and purify the bio-isoprene from the fermentation outlet gas. The proposed microaerobic process can potentially be applied in the production of other volatile bioproducts to benefit the downstream purification process.


Assuntos
Escherichia coli/genética , Hemiterpenos/biossíntese , Ácido Láctico/biossíntese , Engenharia Metabólica , Aerobiose/genética , Butadienos/química , Escherichia coli/metabolismo , Fermentação , Hemiterpenos/química , Ácido Láctico/química , Ácido Mevalônico/química
11.
BMC Cancer ; 21(1): 1181, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740322

RESUMO

BACKGROUND: Increased expression of the transcription factor Forkhead box M1 (FOXM1) has been reported to play an important role in the progression and development of multiple tumors, but the molecular mechanisms that regulate FOXM1 expression remain unknown, and the role of FOXM1 in aerobic glycolysis is still not clear. METHODS: The expression of FOXM1 and NADPH oxidase 4 (NOX4) in normal brain tissues and glioma was detected in data from the TCGA database and in our specimens. The effect of NOX4 on the expression of FOXM1 was determined by Western blot, qPCR, reactive oxygen species (ROS) production assays, and luciferase assays. The functions of NOX4 and FOXM1 in aerobic glycolysis in glioblastoma cells were determined by a series of experiments, such as Western blot, extracellular acidification rate (ECAR), lactate production, and intracellular ATP level assays. A xenograft mouse model was established to test our findings in vivo. RESULTS: The expression of FOXM1 and NOX4 was increased in glioma specimens compared with normal brain tissues and correlated with poor clinical outcomes. Aberrant mitochondrial reactive oxygen species (ROS) generation of NOX4 induced FOXM1 expression. Mechanistic studies demonstrated that NOX4-derived MitoROS exert their regulatory role on FOXM1 by mediating hypoxia-inducible factor 1α (HIF-1α) stabilization. Further research showed that NOX4-derived MitoROS-induced HIF-1α directly activates the transcription of FOXM1 and results in increased FOXM1 expression. Overexpression of NOX4 or FOXM1 promoted aerobic glycolysis, whereas knockdown of NOX4 or FOXM1 significantly suppressed aerobic glycolysis, in glioblastoma cells. NOX4-induced aerobic glycolysis was dependent on elevated FOXM1 expression, as FOXM1 knockdown abolished NOX4-induced aerobic glycolysis in glioblastoma cells both in vitro and in vivo. CONCLUSION: Increased expression of FOXM1 induced by NOX4-derived MitoROS plays a pivotal role in aerobic glycolysis, and our findings suggest that inhibition of NOX4-FOXM1 signaling may present a potential therapeutic target for glioblastoma treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteína Forkhead Box M1/metabolismo , Glioblastoma/metabolismo , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Efeito Warburg em Oncologia , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Proteína Forkhead Box M1/antagonistas & inibidores , Glioblastoma/terapia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo , NADPH Oxidase 4/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias
12.
Cells ; 10(11)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34831316

RESUMO

Cholangiocarcinoma (CCA), or cancer of bile duct epithelial cells, is a very aggressive malignancy characterized by early lymphangiogenesis in the tumor microenvironment (TME) and lymph node (LN) metastasis which correlate with adverse patient outcome. However, the specific roles of lymphatic endothelial cells (LECs) that promote LN metastasis remains unexplored. Here we aimed to identify the dynamic molecular crosstalk between LECs and CCA cells that activate tumor-promoting pathways and enhances lymphangiogenic mechanisms. Our studies show that inflamed LECs produced high levels of chemokine CXCL5 that signals through its receptor CXCR2 on CCA cells. The CXCR2-CXCL5 signaling axis in turn activates EMT (epithelial-mesenchymal transition) inducing MMP (matrix metalloproteinase) genes such as GLI, PTCHD, and MMP2 in CCA cells that promote CCA migration and invasion. Further, rate of mitochondrial respiration and glycolysis of CCA cells was significantly upregulated by inflamed LECs and CXCL5 activation, indicating metabolic reprogramming. CXCL5 also induced lactate production, glucose uptake, and mitoROS. CXCL5 also induced LEC tube formation and increased metabolic gene expression in LECs. In vivo studies using CCA orthotopic models confirmed several of these mechanisms. Our data points to a key finding that LECs upregulate critical tumor-promoting pathways in CCA via CXCR2-CXCL5 axis, which further augments CCA metastasis.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Quimiocina CXCL5/metabolismo , Colangiocarcinoma/metabolismo , Sistema Linfático/patologia , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Movimento Celular , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Células Endoteliais/patologia , Metabolismo Energético , Transição Epitelial-Mesenquimal/genética , Adesões Focais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Ácido Láctico/biossíntese , Linfonodos/patologia , Linfangiogênese/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
13.
Appl Biochem Biotechnol ; 193(12): 4151-4171, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34519919

RESUMO

Lactic acid can synthesize high value-added chemicals such as poly lactic acid. In order to further minimize the cost of lactic acid production, some effective strategies (e.g., effective mutagenesis and metabolic engineering) have been applied to increase productive capacity of lactic acid bacteria. In addition, low-cost cheap raw materials (e.g., cheap carbon source and cheap nitrogen source) are also used to reduce the cost of lactic acid production. In this review, we summarized the recent developments in lactic acid production, including efficient strain modification technology (high-efficiency mutagenesis means, adaptive laboratory evolution, and metabolic engineering), the use of low-cost cheap raw materials, and also discussed the future prospects of this field, which could promote the development of lactic acid industry.


Assuntos
Microbiologia Industrial , Ácido Láctico/biossíntese , Lactobacillales/crescimento & desenvolvimento , Engenharia Metabólica , Lactobacillales/genética
14.
Cancer Sci ; 112(10): 4127-4138, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382305

RESUMO

Characteristically, cancer cells metabolize glucose through aerobic glycolysis, known as the Warburg effect. Accumulating evidence suggest that during cancer formation, microRNAs (miRNAs) could regulate such metabolic reprogramming. In the present study, miR-9-1 was identified as significantly hypermethylated in nasopharyngeal carcinoma (NPC) cell lines and clinical tissues. Ectopic expression of miR-9-1 inhibited NPC cell growth and glycolytic metabolism, including reduced glycolysis, by reducing lactate production, glucose uptake, cellular glucose-6-phosphate levels, and ATP generation in vitro and tumor proliferation in vivo. HK2 (encoding hexokinase 2) was identified as a direct target of miR-9-1 using luciferase reporter assays and Western blotting. In NPC cells, hypermethylation regulates miR-9-1 expression and inhibits HK2 translation by directly targeting its 3' untranslated region. MiR-9-1 overexpression markedly reduced HK2 protein levels. Restoration of HK2 expression attenuated the inhibitory effect of miR-9-1 on NPC cell proliferation and glycolysis. Fluorescence in situ hybridization results indicated that miR-9-1 expression was an independent prognostic factor in NPC. Our findings revealed the role of the miR-9-1/HK2 axis in the metabolic reprogramming of NPC, providing a potential therapeutic strategy for NPC.


Assuntos
Hexoquinase/metabolismo , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Região 3'-Flanqueadora , Trifosfato de Adenosina/biossíntese , Animais , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glicólise , Xenoenxertos , Humanos , Hibridização in Situ Fluorescente , Ácido Láctico/biossíntese , Masculino , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Carcinoma Nasofaríngeo/mortalidade , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/mortalidade , Neoplasias Nasofaríngeas/patologia , Células-Tronco Neoplásicas , RNA Mensageiro/metabolismo
15.
Bioprocess Biosyst Eng ; 44(11): 2445-2454, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34304345

RESUMO

Chemical pretreatment of lignocellulosic biomass is a critical step in the conversion of lignocellulose to biofuels and biochemical. The main drawback of this pretreatment process is the formation of inhibitors which exhibit combined toxicity to microorganisms and result to low product concentrations and yields. In this study, the selection of microbial consortia by enrichment on hydrolysate of H2SO4-pretreated corn stover (pre-CS) without detoxification has been investigated as an efficient way to develop new strategies for lignocellulose utilization. The analysis of cattle stomach-dervied microbial consortia domesticated to degrade hydrolysate of pre-CS to produce lactic acid (LA) at different temperatures was investigated. Bacterial 16S rRNA gene amplicon sequencing analyses indicated that the three microbial consortia were taxonomically distinct and Enterococcus became dominant at high temperature. The highest glucose consumption rate was observed at 45 °C, while the three microbial consortia showed similar consumption rates of xylose and arabinose. The selected microbial consortia DUT37, DUT45 and DUT47 showed preferable resistances to inhibitors in hydrolysate of pre-CS and abilities of xylose utilization. A batch simultaneous saccharification and fermentation (SSF) process was developed by microbial consortium DUT47 at 47 °C to produce LA from pre-CS under non-detoxified and non-sterile conditions. The LA concentration and yield were 43.73 g/L and 0.50 g/g-corn stover (CS), respectively. Microbial consortium DUT47 has been shown to be suitable for LA production from H2SO4-pretreated corn stover without detoxification due to its thermophilic growth characteristics, robust tolerance of inhibitors, and the simultaneous utilization of glucose and xylose.


Assuntos
Ácido Láctico/biossíntese , Consórcios Microbianos , Zea mays/microbiologia , Adaptação Fisiológica , Reatores Biológicos , Fermentação , Temperatura , Zea mays/química
16.
Nutrients ; 13(5)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065078

RESUMO

The kidney is a highly metabolically active organ that relies on specialized epithelial cells comprising the renal tubules to reabsorb most of the filtered water and solutes. Most of this reabsorption is mediated by the proximal tubules, and high amounts of energy are needed to facilitate solute movement. Thus, proximal tubules use fatty acid oxidation, which generates more adenosine triphosphate (ATP) than glucose metabolism, as its preferred metabolic pathway. After kidney injury, metabolism is altered, leading to decreased fatty acid oxidation and increased lactic acid generation. This review discusses how metabolism differs between the proximal and more distal tubular segments of the healthy nephron. In addition, metabolic changes in acute kidney injury and chronic kidney disease are discussed, as well as how these changes in metabolism may impact tubule repair and chronic kidney disease progression.


Assuntos
Injúria Renal Aguda/metabolismo , Açúcares da Dieta/metabolismo , Ácidos Graxos/metabolismo , Túbulos Renais/metabolismo , Insuficiência Renal Crônica/metabolismo , Progressão da Doença , Humanos , Túbulos Renais Proximais/metabolismo , Ácido Láctico/biossíntese , Oxirredução
17.
Cancer Sci ; 112(9): 3822-3834, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34181805

RESUMO

Bladder cancer is the 10th most common cancer worldwide. For muscle-invasive bladder cancer (MIBC), treatment includes radical cystectomy, radiotherapy, and chemotherapy; however, the outcome is generally poor. For non-muscle-invasive bladder cancer (NMIBC), tumor recurrence is common. There is an urgent need for more effective and less harmful therapeutic approaches. Here, bladder cancer cell metabolic reprogramming to rely on aerobic glycolysis (the Warburg effect) and expression of associated molecular therapeutic targets by bladder cancer cells of different stages and grades, and in freshly resected clinical tissue, is investigated. Importantly, analyses indicate that the Warburg effect is a feature of both NMIBCs and MIBCs. In two in vitro inducible epithelial-mesenchymal transition (EMT) bladder cancer models, EMT stimulation correlated with increased lactate production, the end product of aerobic glycolysis. Protein levels of lactate dehydrogenase A (LDH-A), which promotes pyruvate enzymatic reduction to lactate, were higher in most bladder cancer cell lines (compared with LDH-B, which catalyzes the reverse reaction), but the levels did not closely correlate with aerobic glycolysis rates. Although LDH-A is expressed in normal urothelial cells, LDH-A knockdown by RNAi selectively induced urothelial cancer cell apoptotic death, whereas normal cells were unaffected-identifying LDH-A as a cancer-selective therapeutic target for bladder cancers. LDH-A and other potential therapeutic targets (MCT4 and GLUT1) were expressed in patient clinical specimens; however, positive staining varied in different areas of sections and with distance from a blood vessel. This intratumoral heterogeneity has important therapeutic implications and indicates the possibility of tumor cell metabolic coupling.


Assuntos
L-Lactato Desidrogenase/metabolismo , Ácido Láctico/biossíntese , Transcriptoma , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Efeito Warburg em Oncologia , Apoptose/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/genética , Terapia de Alvo Molecular/métodos , Estadiamento de Neoplasias , Interferência de RNA , Sirtuína 1/genética , Sirtuína 1/metabolismo , Transfecção , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Efeito Warburg em Oncologia/efeitos dos fármacos
18.
Bioresour Technol ; 337: 125365, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34102515

RESUMO

The feasibility of co-fermentation of food waste and spent mushroom substance for lactic acid with Aspergillus niger cellulase replacing commercial cellulase was explored. In this study, Enterococcus mundtii was used in this study because it could utilize hexose and pentose. When the ratio of food waste and spent mushroom substance was 1:2, lactic acid concentration was 39.22 g/L, 39.28% higher than the weighted average of experimental lactic acid concentrations, indicating that the co-fermentation had positive synergistic effects. Results showed 92.62% of sugars of pretreated spent mushroom substance was released by Aspergillus niger cellulase. Moreover, when Aspergillus niger cellulase was added into the lactic acid fermentation system at 24 h, lactic acid concentration reached 48.72 g/L, which was 22.97% higher than that of the control group with commercial cellulase, because of the disappearance of Veillonella and Saccharomycetales with the Aspergillus niger cellulase addition, thus making more substrates converted into lactic acid.


Assuntos
Agaricales , Celulase , Ácido Láctico/biossíntese , Agaricales/metabolismo , Aspergillus niger/enzimologia , Celulase/metabolismo , Enterococcus , Fermentação , Alimentos , Eliminação de Resíduos
19.
World J Microbiol Biotechnol ; 37(7): 117, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128152

RESUMO

3-Hydroxypropionic acid (3-HP) represents an economically important platform compound from which a panel of bulk chemicals can be derived. Compared with petroleum-dependent chemical synthesis, bioproduction of 3-HP has attracted more attention due to utilization of renewable biomass. This review outlines bacterial production of 3-HP, covering aspects of host strains (e.g., Escherichia coli and Klebsiella pneumoniae), metabolic pathways, key enzymes, and hurdles hindering high-level production. Inspired by the state-of-the-art advances in metabolic engineering and synthetic biology, we come up with protocols to overcome the hurdles constraining 3-HP production. The protocols range from rewiring of metabolic networks, alleviation of metabolite toxicity, to dynamic control of cell size and density. Especially, this review highlights the substantial contribution of microbial growth to 3-HP production, as we recognize the synchronization between cell growth and 3-HP formation. Accordingly, we summarize the following growth-promoting strategies: (i) optimization of fermentation conditions; (ii) construction of gene circuits to alleviate feedback inhibition; (iii) recruitment of RNA polymerases to overexpress key enzymes which in turn boost cell growth and 3-HP production. Lastly, we propose metabolic engineering approaches to simplify downstream separation and purification. Overall, this review aims to portray a picture of bacterial production of 3-HP.


Assuntos
Bactérias/crescimento & desenvolvimento , Vias Biossintéticas , Ácido Láctico/análogos & derivados , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Redes Reguladoras de Genes , Ácido Láctico/biossíntese , Engenharia Metabólica , Biologia Sintética
20.
J Dairy Res ; 88(2): 210-216, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33934726

RESUMO

This paper reveals the technological properties of lactic acid bacteria isolated from raw milk (colostrum and mature milk) of Wagyu cattle raised in Okayama Prefecture, Japan. Isolates were identified based on their physiological and biochemical characteristics as well as 16S rDNA sequence analysis. Streptococcus lutetiensis and Lactobacillus plantarum showed high acid and diacetyl-acetoin production in milk after 24 h of incubation at 40 and 30°C, respectively. These strains are thought to have potential for use as starter cultures and adjunct cultures for fermented dairy products.


Assuntos
Bovinos/microbiologia , Lactobacillales/fisiologia , Leite/microbiologia , Animais , Carga Bacteriana , Colostro/microbiologia , Produtos Fermentados do Leite/microbiologia , DNA/análise , Fermentação , Japão , Ácido Láctico/biossíntese , Lactobacillales/genética , Lactobacillus plantarum/isolamento & purificação , Lactobacillus plantarum/fisiologia , RNA Ribossômico 16S/genética , Streptococcus/isolamento & purificação , Streptococcus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...